

CSE III Yr- I SEM 87

PRINCIPLES OF PROGRAMMING LANGUAGES (CS515PE)

 COURSE PLANNER

I.COURSE OVERVIEW:

Study of programming languages requires an examination of formal methods of

describing the syntax and semantics of programming languages. Also ,implementation

techniques for various language constructs such as lexical and syntax analysis, implementation

of subprogram linkage and implementation of various programming languages are to be

discussed. To briefly describe various programming paradigms. To provide conceptual

understanding of High level language design and implementation. To introduce the power of

scripting languages.

II.PRE-REQUISITES:

This course requires basic computer knowledge and programming languages like C.

III. COURSE OBJECTIVIES:

The following are the list of potential benefits of studying principles of programming language

course.

1. To introduce the various programming paradigms.

2. To understand the evolution of programming languages.

3. To understand the concepts of OO languages, functional languages, logical and scripting

 languages.

4. To introduce the principles and techniques involved in design and implementation of

 modern programming languages.

5. To introduce the notations to describe the syntax and semantics of programming languages.

6. To introduce the concepts of concurrency control and exception handling.

7. To introduce the concepts of ADT and OOP for software development.

IV. COURSE OUTCOMES:

Course Outcomes (CO)
Knowledge

Level
(Blooms Level)

CO1 Understand to express syntax and semantics in formal notation. L2: Understand
CO2 Employ to apply suitable programming paradigm for the

application.

L3: Apply

CO3 Design to program in different language paradigms and evaluate
their relative benefits

L6: Create

C04 Understand the programming paradigms of modern programming

languages.
L2: Understand

C05 Understand the concepts of ADT and OOP. L2: Understand
C06 Knowledge to compare the features of various programming

languages.

L1: Remember

 V. HOW PROGRAMS OUTCOMES ARE ASSESSED:

CSE III Yr- I SEM 88

Program Outcomes (POs) Level

Proficiency

assessed

by

PO1

Engineering knowledge: Apply the knowledge of

mathematics, science, engineering fundamentals, and an

engineering specialization to the solution of complex

engineering problems.

3 Assignments

PO2

Problem analysis: Identify, formulate, review research

literature, and analyze complex engineering

problems reaching substantiated conclusions using

first principles of mathematics, natural sciences, and

engineering sciences.

3 Assignments

PO3

Design/development of solutions: Design solutions

for complex engineering problems and design

system components or processes that meet the

specified needs with appropriate consideration for

the public health and safety, and the cultural,

societal, and environmental considerations.

2

Open ended

experimen

ts /

PO4

Conduct investigations of complex problems: Use

research-based knowledge and research methods

including design of experiments, analysis and

interpretation of data, and synthesis of the

information to provide valid conclusions.

2

Open ended

experimen

ts /

PO5

Modern tool usage: Create, select, and apply

appropriate techniques, resources, and modern

engineering and IT tools including prediction and

modeling to complex engineering activities with an

understanding of the limitations.

1 Mini Project

PO6

The engineer and society: Apply reasoning informed

by the contextual knowledge to assess societal,

health, safety, legal and cultural issues and the

consequent responsibilities relevant to the

professional engineering practice.

- --

PO7

Environment and sustainability: Understand the

impact of the professional engineering solutions in

societal and environmental contexts, and

demonstrate the knowledge of, and need for

sustainable development.

- --

PO8

Ethics: Apply ethical principles and commit to

professional ethics and responsibilities and norms of

the engineering practice.

- --

PO9

Individual and team work: Function effectively as an

individual, and as a member or leader in diverse

teams, and in multidisciplinary settings.
- --

PO10

Communication: Communicate effectively on complex

engineering activities with the engineering

community and with society at large, such as, being

able to comprehend and write effective reports and

design documentation, make effective presentations,

1

Seminars /

Term

Paper

CSE III Yr- I SEM 89

Program Outcomes (POs) Level

Proficiency

assessed

by

and give and receive clear instructions.

PO11

Project management and finance: Demonstrate

knowledge and understanding of the engineering and

management principles and apply these to one’s own

work, as a member and leader in a team, to manage

projects and in multidisciplinary environments.

- --

PO12

Life-long learning: Recognize the need for, and have

the preparation and ability to engage in independent

and life-long learning in the broadest context of

technological change.

2

Competitive

Examinati

ons

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Program Specific Outcomes (PSOs) Level

Proficiency

assessed

by

PSO1

Software Development and Research Ability: Ability

to understand the structure and development

methodologies of software systems. Possess professional

skills and knowledge of software design process.

Familiarity and practical competence with a broad range

of programming language and open source platforms.

Use knowledge in various domains to identify research

gaps and hence to provide solution to new ideas and

innovations.

3

Lectures,

Assignme

nts

PSO2

Foundation of mathematical concepts: Ability to apply

the acquired knowledge of basic skills, principles of

computing, mathematical foundations, algorithmic

principles, modeling and design of computer- based

systems in solving real world engineering Problems.

2

Mini Projects

/

Experime

nts

PSO3

Successful Career: Ability to update knowledge

continuously in the tools like Rational Rose, MATLAB,

Argo UML, R Language and technologies like Storage,

Computing, Communication to meet the industry

requirements in creating innovative career paths for

immediate employment and for higher studies.

2
Experiments /

Tools

VII.SYLLABUS:

UNIT- I :
Preliminary Concepts: Reasons for studying concepts of programming languages,

programming domains, language evaluation criteria, influences on language design, language

categories, language design trade-offs, implementation methods, programming environments,

Evolution of Major Programming Languages.

Syntax and Semantics: General problem of describing syntax, formal methods of describing

syntax, attribute grammars, describing the meanings of programs

UNIT- II:

Names, Bindings, and Scopes: Introduction, names, variables, concept of binding, scope, scope

and lifetime, referencing environments, named constants

CSE III Yr- I SEM 90

Data types: Introduction, primitive, character, string types, user defined ordinal types, array,

associative arrays, record, tuple types, list types, union types, pointer and reference types,

type checking, strong typing, type equivalence

Expressions and Statements: Arithmetic expressions, overloaded operators, type conversions,

relational and boolean expressions, short- circuit evaluation, assignment statements, mixed-

mode assignment

Control Structures – introduction, selection statements, iterative statements, unconditional

branching, guarded commands.

UNIT- III:

Subprograms: Fundamentals of subprograms, design issues for subprograms, local referencing

environments, parameter passing methods, parameters that are subprograms, calling

subprograms indirectly, overloaded subprograms, generic subprograms, design issues for

functions, user defined overloaded operators, closures, co routines

Implementing subprograms: General semantics of calls and returns, implementing simple

subprograms, implementing subprograms with stack-dynamic local variables, nested

subprograms, blocks, implementing dynamic scoping

Abstract Data types: The concept of abstraction, introductions to data abstraction, design issues,

language examples, parameterized ADT, encapsulation constructs, naming encapsulations

UNIT- IV:

Object Oriented Programming: Design issues for OOP, OOP in Smalltalk, C++, Java, Ada 95,

Ruby, Implementation of Object-Oriented constructs.

 Concurrency: Introduction, introduction to subprogram level concurrency, semaphores,

monitors, message passing, Ada support for concurrency, Java threads, concurrency in

functional languages, statement level concurrency. Exception Handling and Event Handling:

Introduction, exception handling in Ada, C++, Java, introduction to event handling, event

handling with Java and C#.

 UNIT-V :

Functional Programming Languages: Introduction, mathematical functions, fundamentals of

functional programming language, LISP, support for functional programming in primarily

imperative languages, comparison of functional and imperative languages

Logic Programming Language: Introduction, an overview of logic programming, basic

elements of prolog, deficiencies of prolog, applications of logic programming.

 Scripting Language: Pragmatics, Key Concepts, Case Study : Python – Values and Types,

Variables , Storage and Control, Bindings and Scope, Procedural Abstraction, Data

Abstraction, Separate Compilation, Module Library. (Text Book 2)

TEXT BOOKS:

1. Concepts of Programming Languages, Robert .W. Sebesta 10th edition, Pearson Education.

 2. Programming Language Design Concepts, D. A. Watt, Wiley India Edition.

REFERENCE BOOKS:

1. Programming Languages, A.B. Tucker, R.E. Noonan, TMH.

2. Programming Languages, K. C. Louden and K A Lambert., 3rd edition, Cengage Learning.

3. Programming Language Concepts, C Ghezzi and M Jazayeri, Wiley India.

4. Programming Languages 2nd Edition Ravi Sethi Pearson.

CSE III Yr- I SEM 91

5. Introduction to Programming Languages Arvind Kumar Bansal CRC Press.

VII.LESSON PLAN:

S
.

N
O

.

W
E

E
K

U
n

it

Topics Topics to be covered
Link for

PPT

Link for

PDF

Link for

Small

Projects/

Numericals

(if any)

Course

Learning

Outcomes

Teaching

Method

ology

R
e
fe

r
e
n

ce
s

1

1

1

Reasons for

studying
concepts of

programming

language,progra

mming domani

• Introduction,

• Evolution Needs

• Different types of

languages in brief
• Increased capacity to

express ideas

• Scientific Applications

• Business Applications

• Artificial Intelligence

• Systems Programming

https://doc

s.google.co

m/presentat

ion/d/1UuT

TL1np7RQ

fPEEkg62O

ZohRGvW
DP7O0/edit

?usp=sharin

g&ouid=10

762528017

659367550

5&rtpof=tr

ue&sd=true

https://dri

ve.google.

com/file/d/

1SbKraAo

KsvLKwr-
WaDdCn2

geLMxe4

HED/view

?usp=shari

ng

2 1

language

evaluation

criteria

• Readability

• Overall Simplicity

• Orthogonality

• Data Types
• Syntax Design

• Write ability

NA
Understan

d

Chalk and

talk
TI

3 1

Influences on

Language
Design,

Language

Categories

• Computer Architecture

• Programming Design
Methodologies

• Procedural

• Object oriented

NA
Understan

d

Chalk and

talk
TI

4

2

1

Language

Design Trade-

Offs

• Reliability

• Cost of execution
NA

Understan

d

Chalk and

talk
TI

5 1

Implementatio

n Methods,

Programming

Environments

• Internal memory

• Processor
NA

Understan

d

Chalk and

talk
TI

6 1

General

Problem of

Describing

Syntax and

Semantics,

• Language Recognizers

• Language Generators
NA

Understan

d

Chalk and

talk
TI

7 3 1

Formal
Methods of

Describing

Syntax,

• Backus-Naur Form and

Context-Free Grammars

• Context-Free

Grammars

• Origins of Backus-Naur

Form
• Fundamentals

• Describing Lists

• Grammars and

Derivations

• Parse Trees

• Ambiguity

• Extended BNF

NA
Understan

d

Chalk and

talk
TI

CSE III Yr- I SEM 92

• Grammars and

Recognizers

8

3

1

Attribute

Grammars,

Describing the
Meanings of

Programs

• Static Semantics

• Basic Concepts

• Attribute Grammars

Defined

• Intrinsic Attributes

• Examples of Attribute
Grammars

• operational Semantics

• The Basic Process

• Denotational Semantics

• Two Simple Examples

• The State of a Program

NA
Understan

d
Chalk and

talk
TI

9 2

Introduction,

Names,
Variables,

Concept of

Binding

• Introduction

• Design Issues

• Binding of Attributes to
Variables

• Type Bindings

• Storage Bindings and

Lifetime

https://doc

s.google.co

m/presentat

ion/d/1ipW
02xkAtKV

y2Gf8D0N

seC-

bR89imA-

b/edit?usp=

sharing&ou

id=1076252

801765936

75505&rtp

of=true&sd

=true

https://dri

ve.google.
com/file/d/

1ErZ7Sv4

gPzGiX3a

YiHSmy0t

k3IY2-

k84/view?

usp=sharin

g

NA
Understan

d
Chalk and

talk
TI

10

4

 mock test-1 NA
Understan

d

Chalk and

talk
TI

11 2

Scope, Scope

and

Lifetime,Refere

ncing

Environments,

Named

Constants

• Static Scope
• Blocks

• Declaration Order

• Global Scope

• Dynamic Scope

• Different types of

lifetimes• Examples

• Example with global

variable

NA
Understan

d

Chalk and

talk
TI

12 2

Data Types:

Introduction,

Primitive Data

Types,

Character String

Types, User

Defined Ordinal

Types,

• Primitive Data Types

• Boolean Types

• Character Types

• Character String Types

• Enumeration Types

• Evaluation

• Subrange Types

• Implementation of

User-Defined Ordinal

Types

NA
Understan

d

Chalk and

talk
TI

13 5 2

Tuple Types,

List Types,

Pointer and
Reference

Types, Type

• Definitions of Records

• References to Record

Fields

• Evaluation
• Implementation of

Record Types

NA

Understan

d

Chalk and

talk
TI

• Discriminated Versus
Free Unions

CSE III Yr- I SEM 93

14 2

Checking,

Strong Typing,

Type

Equivalence

• Pointer Operations

• Pointer Problems

• Dangling Pointers

• Pointers in Ada

• Pointers in C and C++

• Implementation of

Pointer and Reference

Types

NA
Understan

d

Chalk and

talk
TI

15 2

Short Circuit

Evaluation,

Assignment

Statements

• Simple Assignments

• Conditional Targets

• Compound Assignment

Operators

• Unary Assignment

Operators

• Assignment as an

Expression

• Multiple Assignments

• Assignment in

Functional Programming
Languages

NA
Understan

d

Chalk and

talk
TI

16

6

2

Mixed-Mode

Assignment,Co

ntrol Structures

–

Introduction,Sel

ection

Statements

 Simple Assignments

Conditional Targets

Compound Assignment

Operators

Unary Assignment

Operators

NA
Understan

d

Chalk and

talk
TI

17 2
Iterative

Statements

 Simple Assignments

Conditional Targets

Compound Assignment

Operators

Unary Assignment

Operators

NA
Understan

d

Chalk and

talk
TI

18 2

Unconditional,

Branching,

Guarded

Commands.

 Assignment as an
Expression

Multiple Assignments

Assignment in Functional

Programming Languages

NA
Understan

d

Chalk and

talk
TI

MID-I EXAMINATION (From 08-11-2021)

19

7

3

Fundamentals of

Sub-Programs,

Design Issues for

Subprograms,

• General Subprogram

Characteristics

• Basic Definitions

• Parameters

• Procedures and

Functions

https://docs.

google.com/

presentation/

d/17LLKPru

NBP-

KuzViJlHQP
XX-

MzTgcXil/e

dit?usp=shar

ing&ouid=1

0762528017

6593675505

&rtpof=true

&sd=true

https://dri

ve.google.

com/file/d/

1JA6waK
_CPoBxN

1OJC2P-

roReKuR

DCdKn/vi

ew?usp=s

haring

20 3

Local Referencing

Environments,

Parameter Passing

Methods,

• Local Variables

• Nested Subprograms

• Semantics Models of

Parameter Passing

• Implementation Models

of Parameter Passing

• Pass-by-Value

• Pass-by-Result

• Pass-by-Reference
• Pass-by-Name

NA
Understan

d

Chalk and

talk
TI

CSE III Yr- I SEM 94

21 3

Parameters that

Are Subprograms,

Calling
Subprograms

Indirectly,

Overloaded

Subprograms,

Generic

Subprograms

• Generic Functions in

C++
• Generic Methods in Java

5.0

• Generic Methods in C#

2005

• Generic Functions in F#

NA
Understan

d

Chalk and

talk
TI

22

8

3

Design Issues for

Functions, User

Defined

Overloaded

Operators,

• Functional Side Effects

• Types of Returned

Values

• Number of Returned

Values

• User-Defined

Overloaded Operators

NA
Understan

d

Chalk and

talk
TI

23 3
Closures,

Coroutines

 Number of Returned

Values

User-Defined

Overloaded Operators

NA
Understan

d

Chalk and

talk
TI

24 3

General Semantics

of Calls and
Returns,

Implementing

Simple

Subprograms

 Implementing “Simple”

Subprograms

An Example Without
Recursion

Recursion

Static Chains

The basics

NA
Understan

d

Chalk and

talk
TI

25

9

 mock test-2 NA
Understan

d

Chalk and

talk
TI

26 3

Implementing

Subprograms with

Stack-Dynamic

Local Variables,

Nested

Subprograms

Blocks,Implement
ing Dynamic

Scoping

• Implementing “Simple”

Subprograms

• An Example Without

Recursion

• Recursion

• Static Chains
• The basics

NA
Understan

d

Chalk and

talk
TI

27 3

The Concept of

Abstraction,

Introductions to

Data Abstraction,

Design Issues,

• Introduction to Data

Abstraction

• Floating-Point as an

Abstract Data Type

• User-Defined Abstract

Data Types

NA
Understan

d

Chalk and

talk
TI

28

10

3

Language

Examples,

Parameterized

ADT,
Encapsulation

Constructs,

Naming

Encapsulations

• Abstract Data Types in

Ada

• Abstract Data Types in

C++

• Abstract Data Types in

Obj.-C
• Abstract Data Types in

Java

• Abstract Data Types in

C#

• Abstract Data Types in

Ruby

NA
Understan

d
Chalk and

talk
TI

29 4
Concurrency:

Introduction,

• Multiprocessor

Architectures

CSE III Yr- I SEM 95

Introduction to

Subprogram Level

Concurrency,

Semaphores,

Monitors

• Categories of

Concurrency

• Motivations for the Use

of Concurrency

• Introduction to

Subprogram-Level

Concurrency

• Design Issues

https://docs.

google.com/

presentation/
d/17LLKPru

NBP-

KuzViJlHQP

XX-

MzTgcXil/e

dit?usp=shar

ing&ouid=1

0762528017

6593675505

&rtpof=true

&sd=true

https://dri
ve.google.

com/file/d/

12HAsJ_B

N3N3kAu

r553f6E2ii

8FJOhWz

B/view?us

p=sharing

30 4

Message Passing,

Java Threads,
Concurrency in

Function

Languages,

Statement Level

Concurrency

• Introduction

• Competition
Synchronization

• Cooperation

Synchronization

• The Concept of

Synchronous Message

Passing

NA
Understan

d

Chalk and

talk
TI

31

11

4

Exception

Handling and

Event Handling:

Introduction,

Exception

Handling in Ada,

C++,
Java,Introduction

to Event

Handling, Event

Handling with

Java and C#.

• Basic Concepts

• Design Issues

• Exception Handling in

Ada
• Binding Exceptions to

Handlers

• Other Design Choices

NA
Understan

d

Chalk and

talk
TI

32 5

Functional

Programming

Languages:

Introduction,

Mathematical

Functions,

Fundamentals of

Functional
Programming

Language

• Introduction

• Mathematical Functions

• Simple Functions

• Functional Forms

• The First Functional

Programming Language:

LISP
• Data Types and

Structures

https://dr

ive.google

.com/file/

d/12HAsJ

_BN3N3k

Aur553f6

E2ii8FJO

hWzB/vie

w?usp=sh

aring

NA
Understan

d

Chalk and

talk
TI

33 5

LISP, Support for

Functional

Programming in

Primarily

Imperative,Langu
ages, Comparison

of Functional and

Imperative

Languages

• The First LISP

Interpreter

• Origins of Scheme

• The Scheme Interpreter
• Primitive Numeric

Functions

• Defining Functions

• Output Functions

https://docs.

google.com/

presentation/
d/1X8EUM-

1hhsaSXbPf

unfJcdaH0K

ZILLD1/edit

?usp=sharin

g&ouid=107

6252801765

93675505&r

tpof=true&s

d=true

NA
Understan

d
Chalk and

talk
TI

34 12 5

Logic

Programming
Language:

Introduction, an

Overview of

Logic

Programming,

Basic Elements of

Prolog

• A Brief Introduction to
Predicate Calculus

• Propositions

• Clausal Form

• Predicate Calculus and

Proving Theorems

NA
Understan

d

Chalk and

talk
TI

CSE III Yr- I SEM 96

35 5

Applications of

Logic

Programming.

 The Basic Elements of

Prolog

Terms

Fact Statements

Rule Statements

Goal Statements

The Inferencing Process

of Prolog

NA
Understan

d

Chalk and

talk
TI

36 5

Scripting

Language:
Pragmatics, Key

Concepts, Case

Study: Python –

Values and Types

• Relational Database
Management Systems

• Expert Systems
NA

Understan

d

Chalk and

talk
TI

37

13

5
Variables,Storage

and Control

• Resolution Order

Control
NA

Understan

d

Chalk and

talk
TI

38 5

Bindings and

Scope, Procedural

Abstraction,

• The First LISP
Interpreter

• Origins of Scheme

• The Scheme Interpreter

• Primitive Numeric

Functions

• Defining Functions

• Output Functions

NA
Understan

d

Chalk and

talk
TI

39 5

Data Abstraction,

Separate

Compilation

• A Brief Introduction to

Predicate Calculus

• Propositions

• Clausal Form

• Predicate Calculus and

Proving Theorems

NA
Understan

d

Chalk and

talk
TI

40

14

5 Module Library

 Clausal Form

Predicate Calculus and

Proving Theorems
NA

Understan

d

Chalk and

talk
TI

41 presentations NA
Understan

d

Chalk and

talk
TI

MID-II EXAMINATION (From 10-01-2022)

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF

PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

C
o
u

r
se

 O
u

tc
o
m

e
s Program Outcomes (PO)

Program Specific

Outcomes

(PSO)

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

P
S

O
1

P
S

O
2

P
S

O
3

CO1 2 2 1 - - - - - - 1 - 1 2 2 2

CO2 3 3 2 2 1 - - - - 1 - 2 3 2 2

CO3 3 3 3 1 1 - - - - 1 - 2 3 1 1

CO4 3 3 2 2 1 - - - - 1 - 2 3 2 2

CO5 3 3 2 2 1 - - - - 1 - 2 3 2 2

CO6 2 2 - - - - - - - 1 - 1 2 1 1

AVG 2 2 2 1.75 1.0 - - - - 1.0 - 1.67 2.67 1.67 1.67

CSE III Yr- I SEM 97

X.QUESTION BANK:

UNIT- 1

Short Answer Questions

QUESTIONS Blooms

taxonomy level

Course

Outcome

1. Define imperative programming language? Understand CO1

2. Differentiate between special purpose and general purpose

languages?
Understand C01

3. Differentiate between Syntax and Semantics? Knowledge CO1

4. Write BNF and EBNF grammar for expressions? Knowledge CO1

Long Answer Questions

QUESTIONS Blooms

taxonomy level

Course

Outcomes

1. Explain list of criteria for language evaluation? Create CO1

2. Explain the reasons for studying concepts of programming

language?
Analyze CO1

3. Explain the concept of orthogonality in program language

Design?

Understanding CO1

4. Explain in detail about attribute grammar for simple

assignment statement

Create CO1

5. Describe three advantages of LR parser?

Analyze CO1

UNIT- 2

Short Answer Questions

QUESTIONS Blooms

taxonomy level

Course

Outcomes

1. Define data type and importance of data types? Understand CO2

2. Explain use of C++ reference type? Understand CO2

3. What are the advantages and disadvantages of implicit

declaration?
Knowledge CO2

4. What are the advantages and disadvantages of implicit

declaration?
Knowledge CO2

5. Explain associative arrays, their structure and operations? Analyze CO2

Long Answer Questions

QUESTIONS Blooms

taxonomy level

Course

Outcomes

1. Discuss about various data types?

Create CO2

2. Define an array. Explain the design issues and different types of

arrays?

Analyze CO2

CSE III Yr- I SEM 98

3. Explain unconditional statements supported by different

programming languages?

Understanding CO2

4. Describe the various control statements in programming

languages.
Create CO2

5. Discuss guarded commands in detail? Analyze CO2

UNIT -3

Short Answer Questions

QUESTIONS Blooms

taxonomy level

Course

Outcome

s

1. Define how C language deals with scope and lifetime of a

variable?

Understand CO3

2. Define subprogram and explain its general characteristics? Understand CO3

3. Explain about parameter passing methods?

Knowledge CO3

4. Write about co routines? Knowledge CO3

5. Write about overloaded Programs Knowledge CO4

1. Explain associative arrays, their structure and operations? Analyze CO4

Long Answer Questions

QUESTIONS Blooms

taxonomy level

Course

Outcome

s

1. Define subprogram and explain the distinct categories of sub

programs.
Create CO3

2. What is Generic Subprogram give few examples in

Ada,C++,Java?
Analyze CO3

3. Write short note on overloaded sub programs. Understanding CO3

4. Discuss how generic functions are implemented in C ++. Create CO4

5. Explain how a sub program name can be passed as parameter to

other sub programs.
Analyze CO4

UNIT -4

Short Answer Questions

QUESTIONS Blooms

taxonomy level

Course

Outco

me

1. What problems can occur using C to define abstract data types Understand CO4

2. Distinguish between C++ class and ADA package Understand CO4

3. Distinguish C++ throw specification and throw clause in Java Knowledge CO4

4. Explain the uses of exception handling in programming languages? Knowledge CO5

5. Write the applications of logic programming? Analyze CO5

CSE III Yr- I SEM 99

Long Answer Questions

QUESTIONS Blooms

taxonomy level

Course

outco

me

1. Explain the object oriented programming in small talk, C++ and

Java?
Create CO4

2. Define semaphores. Explain how cooperation and competition

synchronization are implemented using semaphores?
Analyze CO4

3. Explain the applications of Logic programming? Understanding CO4

4. Define a task . Explain the different states of Task? Create CO5

5. Explain dynamic binding in C++ and Java? Analyze CO5

UNIT -5

Short Answer Questions

QUESTIONS Blooms

taxonomy level

Course

Outco

me

1. What is S expression and how it is evaluated with an example. Understand CO5

2. Write a LISP function that calculates sum of numbers using a

vector
Understand CO5

3. List few characteristics of Python language? Knowledge CO5

4. List few examples of scripting languages? Knowledge CO6

5. List the draw backs of using an imperative language compared to

FP?
Knowledge CO6

Long Answer Questions

QUESTIONS Blooms

taxonomy level

Course

Outco

me

1. Describe the following for LISP a)Data types and structures

b)LISP interpreter

Compare Functional Languages with Imperative languages

Create CO5

2. What are the three features of Haskell that make it significantly

different from Scheme
Analyze CO5

3. Explain procedural and data abstraction in python

Understanding CO5

4. Discuss briefly about HTML parsing and CGI argument parsing.

Create CO6

5. What is scripting and explain the characteristics of scripting

languages

Analyze CO6

CSE III Yr- I SEM 100

OBJECTIVE QUESTIONS

UNIT-1

1. The following is the widely used programming language developed for Artificial

Intelligence Application

A)LISP b)FORTRAN c)COBOL d).ALGOL 602.

2. The following language require Interpreter

a) C++ b). C c). COBOL d). APL

3. In C and C++ the asterisk (*) denotes the following operation.

 a)Dereferencing b) negation c) referencing d) address

4. In FORTRAN90, Loop parameters are evaluated

 a)Thrice b) only once c) twice d) every time

5.The following Type compatibility is described in Semantics

 a)Structured b) Static c) Denotional d) Dynamic

UNIT-2

1.The following language has pointer concept

a) Java b) c++ c)DHTML d) HTML

2. The first high level programming to included pointer variables was

 a). Fortran b) PL/1 c) ALGOL 60 d) ADA

3. The following variables should not appear in recursive functions

 a)Register b) static c) auto d) Extern

4. PDA means

a). Pop down Automata b). Push down automata

 c). Push Dip Automata d). Push Down Automatic

5. The type of the following operator ?: is

 a). unary b). not an operator c). ternary d). binary

UNIT-3

1. A describes the interface to and the actions of the subprogram []

 1. subprogram 2. Interface 3.scope 4.blocks

2. The caller is _____during execution of the called subprogram []

A) suspended (B) terminated (C) blocked (D) none

3. The period of time between an allocation and its subsequent disposal is called

 (A)Life time (B) scope (C) binding (D) all

4. In java, object parameters are passed using[]

 (A) call-by-name (B) call-by-value (C) call-by-reference (D) call-by-result

 5. Variables defined inside the subprogram is called []

 A) Global variables B) Local Variables C) Parameter D)None

UNIT-4

1. _____ are used along with the variables in Prolog

A) quantifiers B)qualifiers C)terms D) B&D

2. Finding value to variable in prolog is

A) Unification B) Simplification C) Matching D)exceptional propagation

3. Java clause provides a mechanism for guaranteeing that some code will be executed how the

execution of a try compound terminates.

CSE III Yr- I SEM 101

A) Finally B) throws C) try D) catch

 4. The categories of exceptions in Java are

a) checked b) unchecked c)constant d)a&b

5. Re-consideration of path is

a) Backtracking b) BFS c) forward chaining d) backward chaining

6. Logic programming languages are used in

a) RDBMS b)expert systems

c)natural language processing d)all

UNIT-5

1. A static-scoped functional language with syntax that is closer to Pascal than to LISP

 A)ML B) HASKELL C) C D) FORTRAN

2. ___________Uses lazy evaluation (evaluate no sub expression until the value is needed)

 A)ML B)HASKELL C) LISP D) PROLOG

3. Pure LISP has only two kinds of data structures atoms and []

A). Arrays B). Lists C). variables D). Stack

4. The design of the functional languages is based on

 1.mathematical functions 2. Predicate calculus 3. Relations 4.none

5. The first functional programming language

A). ML B). HASKELL C). LISP D). FORTRAN

Fill in the blanks

UNIT-1

1. C was developed by _______

2. BNF is _________

3. _______is the language of axiomatic semantics.

4. _________semantics was defined in conjunction with the development of a method to prove

the correctness of programs.

5. _____can be used to accept the sentence of a language.

UNIT-2
1.______ refers to a data type in which all the values compromises of a sequence of character

2.______keyword is used to define global variables visible in all the object modules

3.______is a compound expression that contains three expressions.

4.In C switch –case statement the default expression type c a n be _______.

5._________language support independent compilation

UNIT-3
1.______ is the first part of the definition, including the name, the kind of subprogram, and the

formal parameters

2.The _____________is a subprogram’s parameter profile and, if it is a function, its return type

3.C++ A special pointer type called reference type for ______

4.Java :All parameters are _______

CSE III Yr- I SEM 102

5.C ________is achieved by using pointers as parameters

UNIT-4

1. Nearly all programming languages support process abstraction with _______

2. ____________does not currently support parameterized classes

3. A class that inherits is a ____or ______

4. The entire collection of methods of an object is called its ______.

5. Task execution control is maintained by a program called the_______

UNIT- 5

1._______is strongly typed (whereas Scheme is essentially type less) and has no type coercions

2.____________ is used for throw-away programs

3.________ is a process of writing small sized programs so as to glue different software tools

4._________________ is a open source language

5.______________is the only parameter passing method by Python.

GATE: Not Applicable

IES: Not Applicable

XI.WEBSITES:

1.www.nptel.iitm.ac.in/video.php?subjectId=106102067

2. www.cs.cmu.edu/~rwh/courses/ppl/

3. http://www.apl.jhu.edu/~hall/lisp.html

4. http://www.swi-prolog.org/pldoc/refman/

XII.EXPERT DETAILS:

1. Dr. K. Gopinath

Professor

Computer Science & Automation (CSA),

Indian Institute of Science (IISc), Bangalore 560012 INDIA

2. Dr. A. GOVARDHAN

Professor in CSE &

JNTU Hyderabad.

2. Dr. T. Srinivasulu Reddy, Professor in , JNTU Hyderabad.

XIII. JOURNALS:

 (National & International)

1. SCP - Science of Computer Programming

2. TOPLAS - ACM Transactions on Programming Languages and Systems

3. JFP - Journal of Functional Programming

4. JLP - The Journal of Logic and Algebraic Programming

5. TPLP - Theory and Practice of Logic Programming

6. CL - Computer Languages, Systems & Structures

7. IJPP - International Journal of Parallel Programming

8. JOOP - Journal of Object-oriented Programming

XIV.LIST OF TOPICS FOR STUDENT SEMINARS:

1. Reasons for studying programming language

2. General problem of describing syntax and Axiomatic semantics for common programming

language features

3. Pointer Reference types and applications in various programming languages.

4. Short circuit evaluation and Mixed mode assignment

XV.CASE STUDIES/SMALL PROJECTS:

Write a BNF grammar for e-mail addresses that can express the following examples:

morgan@cs.williams.edu
steele@java.com

http://www.apl.jhu.edu/~hall/lisp.html
http://www.swi-prolog.org/pldoc/refman/

CSE III Yr- I SEM 103

Morgan.McGuire@williams.edu -

dingle@_.com 377..5@hotmail.com

president@whitehouse.gov

underscorer@slashdot.org

scott_mccann@2mail.f4st.111.org

and rejects the following:

bad#email.com hello@world

funny/symbol@none.gov jon@edu

illegal@domain.name whole@lota@at.com

empty@..com
Assume that the only legal top-level domains (TLDs) in this grammar are gov, edu, com, and

org, and that there must be at least two period-separated names to the right of the @, and that

those names must contain at least one character each. Assume that the only legal symbols in

an e-mail address to the left and right of the @ are period,

underscore, and dash (minus). (This is all a simplification of real e-mail grammars to make the

problem easier. If you happen to know the real rules...forget them while you're working on

this problem! You can find the real grammar in RFCs

1034 and 822)Remember to put quotes around terminals and angle-brackets around non-

terminals. You may use the regular expression operators [] + * for convenience in addition

to pure BNF grouping parentheses and the exclusive

or operator, |

. The following productions are provided:

<digit> ::= `0' | `1' | `2' | `3' | `4' | `5' | `6' | `7' | `8' | `9'

<alpha> ::= 'a' | `b' | `c' | `d' | `e' | `f' | `g' | `h' | `i' | `j' | `k' | `l' | `m' |

`n' | `o' | `p' | `q' | `r' | `s' | `t' | `u' | `v' | `w' | `x' | `y' | `z' |

'A' | `B' | `C' | `D' | `E' | `F' | `G' | `H' | `I' | `J' | `K' | `L' | `M' | `N'

| `O' | `P' | `Q' | `R' | `S' | `T' | `U' | `V' | `W' | `X' | `Y' | `Z'

